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1. Introduction
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1.1. Motivation

Traditionally, the processing scheme of video analysis systems is based on the feed-
forward (or open-loop) approach that sequentially analyzes the data. The system output,
computed as a function of the input data, is not used as a control variable of the
processing. Its simplicity and low cost have motivated the wide spread among the
existing video analysis systems. However, it does not consider the uncertainty when
dealing with unexpected data and the dependence among processing levels. These
limitations lead to low robustness of such systems for different operating conditions.

On the other hand, the feedback approach is proposed as a control method to increase
the robustness of the system. It defines a closed-loop control that allows to fed back the
output to the input of the system. Thus, an iterative analysis is performed until a desired
performance level is achieved. Despite its advantages, its application in video analysis
is not widely extended as the design of feedback control schemes is a complex task.

In this feedback processing loop, a key element is to estimate the quality of the
generated data (i.e. processing) so decisions can be made whether to continue operating
in the loop or to stop for requesting new data to be analysed. Quality measures estimate
the uncertainty or the output quality of the generated data by each stage of video
processing systems.

Foreground segmentation and tracking are the basic stages for many video
applications The evaluation of the output quality of video object segmentation and
tracking algorithms is crucial to estimate their accuracy and to tune their parameters for
optimal performance. Although analytical approaches exist, this evaluation is typically
performed by comparing the obtained results with manual annotations (or ground-truth,
GT). However, manual annotation is time consuming and prone to human error. It
usually covers a small set of video sequences only representing a small percentage of
data variability. This limitation complicates the extrapolation of the performance
evaluation results to new (unlabeled) sequences. Moreover, evaluation using ground
truth is not feasible for on-line performance analysis. Conversely, the evaluation not-
based on ground-truth (NGT) is a desirable option to overcome these limitations.

Few approaches currently exist for performing feedback-based analysis guided by
quality measures. Within the context of the EventVideo project, this research line aims
to contribute to the state of the art in three areas: video object segmentation, visual
tracking and feature extraction.

1.2. Objetives

The objectives are as follows:

- Development of quality measures for generic video tracking approaches
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- Development of quality measures for specific video tracking approaches such as
Particle Filters.

- Development of quality measures for feature extraction

- Development of feedback control schemes

1.3. Estructure of the document
This document is structured as follows:

- Chapter 1 introduces the research areas covered in the document, its purpose
within the scope of the eventVideo project and the document structure.

- Chapter 2 provides an overview of the approaches developed in the area of
quality measures where the efforts are driven towards video tracking

- Chapter 3 provides an overview of the developments for analysis based on
feedback which applies iterative analysis schemes, thus adapting the analysed
content.

- Chapter 4 concludes this document by summarizing the major findings and
presenting future lines of research.

D.5.2 QUALITY MEASURES AND FEEDBACK-DRIVEN ANALYSIS APPROACHES 2
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2. Quality measures

In this section we present the achievements for quality estimation, focused on video
tracking.

2.1. Temporal validation of particle filters for video
tracking

2.1.1. Approach overview

We propose an approach for determining the temporal consistency of Particle Filters in
video tracking based on model validation of their uncertainty over sliding windows. The
filter uncertainty is related to the consistency of the dispersion of the filter hypotheses in
the state space. We learn an uncertainty model via a mixture of Gamma distributions
whose optimum number is selected by modified information-based criteria. The time-
accumulated model is estimated as the sequential convolution of the uncertainty model.
Model validation is performed by verifying whether the output of the filter belongs to
the convolution model through its approximated cumulative density function.
Experimental results and comparisons show that the proposed approach improves both
precision and recall of competitive approaches such as Gaussian-based online model
extraction, bank of Kalman filters and empirical thresholding. We combine the
proposed approach with a state-of-the-art online performance estimator for video
tracking and show that it improves accuracy compared to the same estimator with
manually tuned thresholds while reducing the overall computational cost. The approach
has been published in the Computer Vision and Image Understanding Journal [1]

The following figure shows an example of a Particle-Filter-based tracker where the
filter becomes inconsistent as most of the hypotheses are apart from each other and have
small weights. The proposed approach aims to detect such behaviour over time for
Particle Filters and determine that the tracker is not correctly operating.

09
08
07
06
05
04

03

02

0.1

Figure 1. Example of filter consistency for face video tracking using a color-based Particle Filter
(with 100 particles). The green ellipse represents the ideal target; the red ellipse represents the estimated
target. The left image illustrates a consistent behavior. The central and right image illustrate inconsistent
situations. The particles (identified for clarity only by their center) are colored according to their weights:
the warmer the color, the higher the weight. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The proposed approach starts from the output generated by a Particle Filter and
considers two stages: Uncertainty Estimation and Model Validation. Model validation
provides a robust framework for Particle Filter consistency analysis whose performance

D.5.2 QUALITY MEASURES AND FEEDBACK-DRIVEN ANALYSIS APPROACHES
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could be improved by sliding windows. For measuring the consistency of the Particle
Filter, we first compute the uncertainty of its posterior and accumulate its change over a
temporal window. Then, we validate an uncertainty change model to check consistency

(Figure 2). We term the proposed approach as Accumulated Validation of Uncertainty
(AVU).

Uncertainty estimation : Model validation

Particle Covarlance Uncertainty Uncertainty i Accum. Hypotheas
I, Filter analysis estimation u change ¢ i1 overtime S testing E
t tye .

...............................................................................................................

Figure 2. Block diagram of the proposed approach.

We estimate the uncertainty for each time t by measuring the spread of the generated
hypotheses in the state space (particles) through the covariance matrix of the filter
output. The following figure shows and example.
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Figure 3. Evolution of the filter uncertainty and its error for color-based Particle Filter video
tracking. Green and red ellipses are, respectively, ideal and estimated target locations. Sample frames
correspond to vertical dotted lines. The filter error was computed as the Dice coefficient.

We estimate the uncertainty for each time t by measuring the spread of the generated
hypotheses in the state space (particles) through the covariance matrix of the filter
output. The following figure shows and example.

The problem consists of detecting changes in the time series c(t) (uncertainty change
over time), which is sampled from a random variable Q following a certain probability
density function (pdf). For increasing robustness of model validation, we accumulate
c(t) by using a sliding window of length L, obtaining a test statistic s(t). Finally, a null
hypothesis test is performed for s(t) in order to determine whether s(t) belongs to a
random variable S following a certain (pdf). The test is as follows:

D.5.2 QUALITY MEASURES AND FEEDBACK-DRIVEN ANALYSIS APPROACHES 4
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After modelling the consistent filter status (i.e. pdfs for c(t) and its window-based
accumulation s(t)), we obtain a decision rule to perform the hypothesis test.

We combine AVU into an online method performance evaluation of Particle Filter-
based video tracking, ARTE [6]. ARTE determines whether the Particle Filter is
successfully estimating the target state without the use of ground-truth. ARTE analyses
the Particle Filter consistency and the time-reversibility property of target motion.

2.1.2. Experimental results

For performing experiments, we use two evaluation sets (D1 and D2) with sequences
selected from the following datasets: CAVIAR, PETS2001, PETS2010, CLEMSON,
VISOR, AVSS2007, TRECVID and MIT TRAFFIC. D1 is the same set as in [6], which
is composed of 18 sequences (>3400 annotated frames). D2 contains 51 sequences
(>7500 annotated frames). Samples are shown in the following figure:
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Figure 4. Sample images of the employed dataset
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We compare AVU against representative approaches for online change detection
without thresholding: the two-model sliding window (Two_MChi) that assumes
Gaussian-distributed data, the bank of Kalman filters adapted to various change
hypothesis Mmodel) and the empirical thresholding approach (EmpTh) [6], which is
tuned using D1. All approaches are applied to the uncertainty change signal c(t).
Experiments with different lengths of the sliding window (L) are performed for testing
the robustness of AVU and the results are summarized in the following figure.

D1: Precision-Recall curves over 100 runs (2181 ground-truth changas in total) D2: Precision-Hecall curves aver 22 runs (1041 ground-truth changas in total)
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Figure 5. Comparison for selected change detection approaches with different lengths (L) of the
sliding windows for evaluation sets D1 (left) and D2 (right).

The results of the proposed approach for online evaluation (hereinafter ARTE*) are
presented in the following figure. The left part of the figure shows that ARTE* has
similar accuracy to ARTE for D1. A noticeable improvement in TPR is observed for
ARTE* with all lengths. However, ARTE* slightly increases the False Positive Rate
compared to ARTE because of the use of the sliding window, requiring a higher amount
of variation to detect an uncertainty change. This implies in some situations a short
delay in the detection of changes. ARTE* reach similar performance to that of the
change detector of ARTE whose threshold values were manually tuned on the same
dataset (D1). The right part of the figure (results on D2) shows a situation where the
thresholds of ARTE are not optimum. As it can be observed, shorter windows got
higher results than that of ARTE demonstrating that the proposed approach generalizes
better than the optimal thresholding of ARTE. However, a performance decrease is
observed as the length of the window increases due to the reduction of the number of
detected changes. The main advantage of ARTE* over ARTE is that it does not require
to setup any threshold.
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Figure 6. ROC analysis for successful-unsuccessful segmentation of video tracking for sets D1 (left)
and D2 (right). Data are presented as mean _ standard deviation. (Key. ARTE: Adaptive Reverse
Tracking Evaluation [6]; ARTE*: threshold-automatic ARTE; AUC: area under the curve, FPR:

false positive rate, TPR: true positive rate).

We demonstrate the generality of the proposed approach by evaluating two state-of-
the-art trackers [2][3]. The first tracker models targets as fragments adaptively selected
over time which are embedded in the PF framework [2]. The second tracker performs
multi-hypothesis estimation based on sparse appearance models, presenting a PF-like
structure [3]. We employ the code provided by the authors with the default parameter
settings. For the proposed approach, we learn the pdfs for each tracker using D1 dataset
and we use L = 20 as a compromise between the previously described results for D1 and
D2 datasets. The EmpTh approach is tuned to get best results for D1. The presented

results are the mean of 10 runs.

(a) Dataset D1

Approach Color-tracker [17] Frag-tracker [34] Sparse-tracker[35]

) ) P R F P F

Two-M Chi |.133 £.01 220 £.02 |.166 = .01 |.186 + .03 |.251 + .02 [.214 £+ .01 [.080 +.01 |.788 + .04 |.145 + .03
Mmodel 074 £.03 (624 £ .01).133 £ .02 |.134 £ .02 [.541 &£ .01 |.215 £ .01 [.104 £ .02 |.718 £ .03 |.182 £ .02
EmpTh 233 £ .06 [.539 £ .03 |.326 £ .04 |.142 £ .01 [.530 4 .03 |.224 £ .02 [.102 £ .06 |.410 £ .04 |.163 £ .04
AVU (L=20)|.404 £+ .03[.430 £ .04 {417 + .02{.264 £+ .04|.587 £+ .02|.364 = .03[.264 £+ .09|.503 £+ .03|.346 = .05

(b) Dataset D2

Approach Color-tracker [17] Frag-tracker [34] Sparse-tracker[35]

) ] P R F P It F P F

Two-M Chi |.210 £ .00 [.202 £ .00 [.206 & .00 [.139 +.00 [.071 + .00 [.094 + .00 [.080 £ .00 |.525 £ .00 [.138 +.00
Mmodel 119 £ .00 (537 £ .00).195 £ .00 |.119 £ .00 [.245 4+ .00 |.160 £ .00 [.099 £ .00 |.475 £ .00 |.164 £ .00
EmpTh 134 £ .00 [466 £ .00 |.208 £ .00 |.134 £ .00 2454+ .00 |.173 £ .00 [.102 £ .00 |.468 £ .00 |.167 £ .00
AVU (L=20)|.440 £+ .00[.451 £+ .00 |.446 + .00({.328 £+ .00|.263 £ .00[.292 = .00{.253 £+ .00|.728 £+ .00[.375 < .00

Table 1. Comparison of change detection approaches for the selected PF-based trackers. Best

results are indicated in bold.
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2.2. Feature-based online validation of video tracking

2.2.1. Approach overview

To overcome the problems related to evaluation, we propose an alternative approach for
online evaluation of single-object trackers without ground-truth data. It is based on the
temporal evolution of covariance features only requiring a bounding box as tracker
output. Unlike previous work focused on the unsuccessful tracker case, the proposed
approach models the successful case and identify model deviations via a validation
strategy. Then, a two-state machine determines the successful tracker results. This work
has been published as a letter [4] and final degree project [5].

An overview of the proposed approach is shown in the following figure. It starts
from the target location estimated by the tracker at time t, X; = [X;; Y;Ws; Vi; 0t], where
(X; Vi), Wy, he and o are the center, width, height and orientation of the target,
respectively. The proposed approach can used most of existing trackers as they output
Xt. Then, we measure the target appearance structure in X; via the covariance feature X.

Tracker | 0 variance | d; Model Ce Tracker |V = {s,U}
output — . cq -
X, Difference Acceptance validation

| s ]

Figure 7. Block diagram of the proposed approach.

We detect dissimilar covariance features over time via a model acceptance strategy.
We consider a model D to define the variability of the distance between consecutive
convariance matrices during successful tracker operation, which follows a probability
density function. We perfom hypothesis testing for model acceptation where the null
hypothesis HO indicates that the covariance change is consistent with the model D. Let
H1 be the hypothesis that an unknown change has occurred. Model acceptance is
formulated via simple hypothesis testing.

Once we determine the consistency of the filter, we employ a finite state machine to
validate the tracker operation (see the following figure) where two states are defined for
the successful (S) and unsuccessful (U) cases. Starting from the S state, the S->U
transition is triggered when the H1 hypothesis is detected due to tracker failures (target
loss). The U->S transition is when the tracker recovers to the correct target after a
failure. It is activated when H1 hypothesis is accepted and the new tracker output is
similar to the previously tracked target. We compute the similarity between the last
successful and the new tracker outputs to determine if we are tracking an old target.

C—’r:H1 &Sr:j.

Figure 8. Finite state machine to validate the tracker output using two states: successful (S) and
unsuccessful (U). c(t) and s(t) are variables for model acceptance and tracker recovery checks.
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2.2.2. Experimental results

We use the SOVTds dataset [8] for evaluation and we validate the results of six well
known trackers based on Mean-Shift, Color-based Particle Filter, Incremental Visual
Tracking, Tracking- Learning-Detection, SuperPixel Tracking and Locally Orderless
Tracking. The code of the original authors is used to analyse the dataset and get the
tracker results for validation (~138000 in total).

The following table compares common features in video tracking against the
covariance feature, all applied within the proposed approach. For each feature, the pdf is
modeled as the best fitting of popular distributions using the Kolmogorov-Smirnov
statistic over the training set. The results show low performance for features based on
contour (shape and area), motion (speed and direction) and color (gray, RGB
histograms and texture) information, demonstrating their low discriminative power
between the successful and unsuccessful cases. Structure-based features (HOG, CLD
and Covariance) present the best results showing that the target appearance structure
exhibits short-term stability. Figure 9 shows an example of the proposed approach
where the three tracker errors (frames 90, 131-164 and 195-214) are correctly identified.

Feature employed Eillecl pdf Model acceptance Tracker validation

; for p(dy) P |R | F TPR | FPR | AUC
Shape ratio [4] Beta JA07 | 177 ) 099 | 929 | 587 | .672
Area ratio [ 5] Beta A59 | 397 | (187 | 905 | 412 | 47
Direction smoothness [5] | Normal 077 | 241 | (100 | 913 | 451 | 726
Speed smoothness [ ] Rayleigh 039 | 422 | .069 | 885 | 429 | 729
Texture difference [5] Gamma 069 | 164 | 089 | 967 | 734 | 617
Gray level [5] Gamma 253 | (150 | 081 | 968 | .834 | .568
Color hist. (RGB) [10)] Exponential | .571 | .166 | .150 | 967 | .831 | .568
Gradient hist. (HOG) [ 1] | Exponential | .297 | .367 | .309 | 958 | 518 | .720
Color layout (CLD) [15] | Exponential | 415 | .363 | .349 | 937 | .629 | .754
Covariance (Proposed) Exponential | .462 | .549 | .489 | 935 | .359 | .788

Table 2. Performance (mean results) of the proposed approach using common features for video

tracking. Bold indicates best results.

[1] Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., and Shah, M.: 'Visual Tracking: An Experimental
Survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (7), pp.1442-1468

[4] Chau, D., Thonnat, M., Brémond, F., and Corvée, E.: 'Online parameter tuning for object tracking algorithms’, Image
Vis. Comput., 2014, 32, (4), pp. 287-302

[5] Spampinato, C., Palazzo, S., and Giordano, D.: ’Evaluation of tracking algorithm performance without ground-truth
data’, Proc. of IEEE Conf. on Image Process., Orlando (USA), Oct. 2012, pp.1345-1348

[10] Nummiaro, K., Koller-Meier, E., and Gool, L.V.: 'An adaptive colour-based particle filter’, Image Vis. Comput., 2002,
21, (1), pp. 99-110

[15]Manjunath, B., Ohm, J., Vasudevan, V., and Yamada, A.: ’Color and texture descriptors’, IEEE Trans. Circ. Syst.
Video Technol., 2001, 11, 6, pp.703-715
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Figure 9. Example for online validation of tracking results between successful (S) and unsuccessful
(V) for the Mean-Shift (MS) tracker. From top to bottom graphs: error as the spatial overlap
between the estimation and ground-truth data, covariance difference d; and final tracker validation.

Table 3 compares the results of the proposed approach against the related state-of-
the-art in terms of accuracy and computational cost. For feature-based approaches, the
proposal clearly improves the accuracy of Hao et al (and its modification using the best
feature), showing the benefits of model validation over a two-model Bayesian classifier
for successful and unsuccessful cases. Moreover, the computational cost is reduced as
only covariance feature is employed instead of multiple features in Spampinato et al.
Compared to reverse validation of Hao et al, the proposed approach reduces the
computation cost around 50x as compared to Hao et al. Moreover, the computations of
Hao et al depend on the sequence length whereas the proposed approach has a bounded

D.5.2 QUALITY MEASURES AND FEEDBACK-DRIVEN ANALYSIS APPROACHES 10
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computation. This limitation of Hao et al prevents its use for many applications where
execution time is critical and for long sequences as the computational cost is not
affordable. Therefore, the proposed approach allows a broader application of online
validation as compared to Hao et al, offering a trade-off between accuracy and cost.
Note that we do not compare with PF-based approaches and approaches with low-
performing features (motion speed and smoothness, see Table 2).

Reference | Type Tracker validation Execution time (ms/frame)
’ TPR | FPR | AUC | A% | Train | Test | A%

[5] Feature 041 | 773 | 584 | +34.7 | 4578 | 4230 | -87.2

[5]* Feature 940 | .739 | .601 | +31.1 | 4299 | 3970 | -86.3

(] Reversibility | .931 | .185 | .886 | -11.1 | - 26681 | -97.7

Proposed | Feature 935 | .359 | 788 | - 567 542 -

Table 3. Comparative results (mean) for online tracker validation. The symbol **’ is for [5] using
only the best feature. A% shows the difference (in percentage) between the proposed and each

selected approach.

[3] Hao, W., Sankaranarayanan, A., and Chellappa, R.: 'Online Empirical Evaluation of Tracking Algorithms’, IEEE
Trans. Pattern Anal. Mach. Intell., 2010, 32, (8), pp.1443-1458

[5] Spampinato, C., Palazzo, S., and Giordano, D.: 'Evaluation of tracking algorithm performance without ground-truth
data’, Proc. of IEEE Conf. on Image Process., Orlando (USA), Oct. 2012, pp.1345-1348

3. Feedback-driven analysis

In this section, we present a feedback-based approach to extract features (skin) in
images, that correspond to human body parts is an important task in many areas such as
human— computer interaction, gesture analysis and content-based image retrieval.

3.1. Skin detection by dual maximization of detectors
agreement for video monitoring

3.1.1. Approach overview

We propose an approach to detect skin in single images of human activity recognition
videos where, for each image, it dynamically selects the best configuration starting from
a predefined one. The approach has been published in the Pattern Recognition Letters
Journal [7].

First, we introduce such adaptation using the AM framework. It selects the best
detectors’s configuration based on agreement maximization (AM) and consists of three
basic elements (detectors applied, agreement measure and optimization process).
However, this framework has no constraints in the parameter optimization process
which makes the thresholds tend to increase the number of false positives or negatives
as agreement is high in certain non-desirable situations. Moreover, there is no indication
of which channels of colour spaces are better for increasing the agreement and complex
combination schemes can be designed considering the properties of the employed
detectors. These detectors are improved by improved by learning parameter relations
through kernel thresholding and including a new agreement measure (see Figure 10(a)).
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Then, two AM-based detectors are composed to detect skin-like regions and high-
probable skin pixels (via optimal selection of color space channels), which are later
combined using binary morphology (see Figure 10(b)) for maximizing performance.

AM-based

skin detector . .
Eo Vorohal T _ Final Skin
VES 1 Skin map Image e Chndd czrpb_fr}‘olg\;: map
mbinati

0,
Agreement | 4 :
D = n., L e
Measurement 1FDy =Dy n b, AW based ¥rEFD L FDy)
o !
1oy Y i FD, - Ski (medium prob.
fro | Optimum color L__3kin detector - Skin regions (medium prob.]

__ Change canfiguration (threshalds) 1 /! space channels _______1_! Coner s Cogal

(a) (b)
Figure 10. Block diagrams of the proposed (a) detector based on agreement maximization (AM)
and (b) framework for skin detection in images.

FI, - Skin pixels (high prob.)

Sub-detector 1

[kernel thresholding)
i

.| Sub-detector 2

(kernel threshelding)

For each type of scenario, we obtain the best color space channels among the most
popular ones (RGB, HSV, YCbCr and Lab) to detect skin pixels by determining their
discriminative capabilities over the training data. We conform the two detectors by
using the color channels {Cbest,Clow} for FD1 and {Cbest,Chigh} for FD2.

After selecting the optimum channels of the AM-based skin detectors and optimizing
their parameters, they are combined to improve the final result of the skin detection.
Considering that one of the detectors obtains highly probable pixels whereas the other
gets compact skin-like regions (that might correspond to skin or similar objects), we
propose to use a morphological reconstruction filter to retain only the skin regions
marked by the highly probable pixels of FD2(among all the regions of FD1). The
following figure shows an example of the proposed approach

Input image Ground-truth Fin FDs F e F Dy« FD3)
(a) (b) (c) (d) (e)

Figure 11. Sample results for an image of the EDds dataset showing the output of the skin detectors
FD1 (H-a colour channels) and FD2 (H-b colour channels) after optimum channel selection and
their combination through mathematical morphology.

3.1.2. Experimental results

As evaluation set, we have selected images from public datasets for human activity
recognition: AMI (http://corpus.amiproject.org/), EDds (http://www-
vpu.eps.uam.es/DS/EDds/), SSG (http://www-vpu.eps.uam.es/publications/SkinDetDM)
LIRIS (http://liris.cnrs.fr/harl2012) and UT (http://cvrc.ece.utexas.edu/SDHA2010).
This set covers a wide variety of situations, viewing distances and resolutions (ranging
from 320x240 to 720x576) where skin detection has many challenges due to, among
others, illumination changes or poor visibility. For each dataset, around 50 images have
been selected and the corresponding ground truth has been manually generated at pixel
level. In total, 290 images compose the evaluation set containing more than 870000 skin
pixels, which have been equally divided into two sets for training (~450000) and testing
(~420000). This subsection presents selected results of the proposed approach.
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The following figure depicts the mean detection ratio of the histogram-models
computed for each channel over the training set. As it can be observed, the minimum
value corresponded to the H channel (of HSV) for all the datasets except for UT, where
a channel (of Lab) obtained best results, closely followed by H. This indicates that H
channel had stable results and high discriminative power (for skin and non-skin regions)
in the considered scenarios.

4EIEI|

ratior,

1 1
EDds LIRIS 558G ) AMI
Dataset

Figure 12. Results for base optimum channel selection over the selected datasets using
mean detection ratio.

Skin detection results of the proposed and compared approaches are presented in the
following Table. As it can be observed, the results of the LIRIS dataset exhibited a clear
decrease in performance for all the approaches as compared to the results of the other
datasets. This is due the office furniture used in the dataset, which contains several skin-
like surfaces affecting the precision results. In general, fixed-thresholding approaches
(T_HS and T_CbCr) got medium performance showing that, albeit effective, the use of
parameters with fixed values does not generalize well for a variety of heterogeneous
scenarios. BAY wversions (BAY_G and BAY_H) obtained good performance
demonstrating that non-skin data can be efficiently used to improve final skin detection.
Adaptive approaches (ASD and MMI) presented very low performance indicating that
introducing adaptive capabilities into skin detection is not an easy task.
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— &

EDds LIRIS SSG uT AMI Mean
Approach
P R F r R F P R F P R F P R F P R F
T CbCr [6] .253 .706 .373 067 914 125 148 854 252 258 .839 395 242 .694 359 194 801 312
T HS [6] 398 484 437 1220 327 178 385 548 453 326 571 415 396 321 354 326 450 .378
BAY H[5] .626 .502 .557 147 647 239 515493 504 .330 590 423 531 804 639 430 607 503
BAY G [5] .647 .524 .579 158 690 258 A69 476 472 304 455 422,610 .784 .686  .455 586 .513
RF [11] 502 685 580 104 .8B6 .18 A36 766 558 284 .897 432 503 .930 .653 .366 .833 .508
7 (

ASD [13] .02
5

[

) 87

J733 .043 038 .TTO 072 164,902 278 .002 251 .004  .044 531 .082 .034 .637 .10(
MMI [18] 055 436 .099  .040 .800 .077 056 552 101 .041 .141 .063 020 549 .039  .042 496 .078
Proposed 623 648 .636 .189 698 .298 457 754 .569 .413 755 .534  5O% 842 .699 .456 .739 .564
%\ best -0.03 -10.9 +9.0 +19.6 -21.2 +15.5 -15.2 -16.0 +1.9 +4.8 -158 +236 -2.1 -94 +1.8 +0.2 -11.2 +10.0

W

Table 4. Comparison for selected skin detection approaches. Best results are bold marked. Last row

indicates the Percentage increase (%) of each measure with respect to the best performance.

[5] M. Jones, J. Rehg, Statistical color models with application to skin detection, Int. Journal of Computer Vision 46 (1)
(2002) 81-96.

[6] Y. Wang, B. Yuan, A novel approach for human face detection from color images under complex background,
Pattern Recognition 34 (10) (2001) 1983-1992.

[11] R. Khan, A. Hanbury, J. Stoettinger, Skin detection: A random forest approach, in: IEEE Int. Conf. on Image
Processing (ICIP), 2010, pp. 4613-4616.

[12] B. Jedynak, H. Zheng, M. Daoudi, Skin detection using pairwise models, Image and Vision Computing 23 (13)
(2005) 1122-1130.

[13] F. Dadgostar, A. Sarrafzadeh, An adaptive real-time skin detector based on hue thresholding: A comparison on two
motion tracking methods, Pattern Recognition Letters 27 (12) (2006) 1342—1352.

[18] C. Conaire, N. O’'Connor, A. Smeaton, Detector adaptation by maximising agreement between independent data
sources, in: IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2007, pp. 1-6.
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4. Conclusions and future work

4.1. Quality measures

Two approaches have been presented for online validation of video tracking. The first is
based on accumulation of spatial uncertainty of filter hypotheses (as convolutions of
mixtures of Gamma distributions) whereas the second is based on short-term evolution
of covariance features.

The results for both approaches show that focusing on temporal consistency of
features is more effective than the traditional approaches. Moreover, the structure of
target appearance (covariance) performs better than common features to determine
tracker errors. Finally, the two proposed approaches outperform competitive feature-
based approaches and provide a generic cost-bounded validation that can be applied for
long-term and time-critical applications.

As future work, we will explore the application of both approaches to deterministic
filters through appropriate adaptations, model validation based on multiple detectors
and the selection of the optimum window length for time-based analysis.

4.2. Feedback-driven analysis

For the task of skin-detection, we have presented the benefits of the feedback approach
for video analysis compared with the traditional feed-forward one. Its main advantages
are the possibility of achieving a desired performance level and adapting to unknown
conditions. However, its complex design has limited its use by the video processing
community. Conversely, the feed-forward approach is easy to develop and the control
over the process performance is not feasible.

Experimental results demonstrate the adaptive capabilities of the proposed approach
to improve performance of parameter-fixed, adaptive and learning-based state-of-the-art
approaches.

As future work, we will explore the adaptive estimation of skin proportions for the
agreement function and the application of the proposed approach to video sequences
exploiting temporal relations between the frames.
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