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1. Introduction 

1.1. Motivation 
Traditionally, the processing scheme of video analysis systems is based on the feed-

forward (or open-loop) approach that sequentially analyzes the data. The system output, 

computed as a function of the input data, is not used as a control variable of the 

processing. Its simplicity and low cost have motivated the wide spread among the 

existing video analysis systems. However, it does not consider the uncertainty when 

dealing with unexpected data and the dependence among processing levels. These 

limitations lead to low robustness of such systems for different operating conditions. 

 

On the other hand, the feedback approach is proposed as a control method to increase 

the robustness of the system. It defines a closed-loop control that allows to fed back the 

output to the input of the system. Thus, an iterative analysis is performed until a desired 

performance level is achieved. Despite its advantages, its application in video analysis 

is not widely extended as the design of feedback control schemes is a complex task.  

 

In this feedback processing loop, a key element is to estimate the quality of the 

generated data (i.e. processing) so decisions can be made whether to continue operating 

in the loop or to stop for requesting new data to be analysed. Quality measures estimate 

the uncertainty or the output quality of the generated data by each stage of video 

processing systems.  

 

Foreground segmentation and tracking are the basic stages for many video 

applications The evaluation of the output quality of video object segmentation and 

tracking algorithms is crucial to estimate their accuracy and to tune their parameters for 

optimal performance. Although analytical approaches exist, this evaluation is typically 

performed by comparing the obtained results with manual annotations (or ground-truth, 

GT). However, manual annotation is time consuming and prone to human error. It 

usually covers a small set of video sequences only representing a small percentage of 

data variability. This limitation complicates the extrapolation of the performance 

evaluation results to new (unlabeled) sequences. Moreover, evaluation using ground 

truth is not feasible for on-line performance analysis. Conversely, the evaluation not-

based on ground-truth (NGT) is a desirable option to overcome these limitations.  
 

Few approaches currently exist for performing feedback-based analysis guided by 

quality measures. Within the context of the EventVideo project, this research line aims 

to contribute to the state of the art in three areas: video object segmentation, visual 

tracking and feature extraction. 

 

1.2. Objetives 
The objectives are as follows:  

 

- Development of quality measures for generic video tracking approaches 
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- Development of quality measures for specific video tracking approaches such as 

Particle Filters. 

- Development of quality measures for feature extraction 

- Development of feedback control schemes 

 

1.3. Estructure of the document 
This document is structured as follows: 

 

- Chapter 1 introduces the research areas covered in the document, its purpose 

within the scope of the eventVideo project and the document structure. 

 

- Chapter 2 provides an overview of the approaches developed in the area of 

quality measures where the efforts are driven towards video tracking 

 

- Chapter 3 provides an overview of the developments for analysis based on 

feedback which applies iterative analysis schemes, thus adapting the analysed 

content. 

 

- Chapter 4 concludes this document by summarizing the major findings and 

presenting future lines of research. 
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2. Quality measures 
In this section we present the achievements for quality estimation, focused on video 

tracking. 

 

2.1. Temporal validation of particle filters for video 
tracking 

2.1.1. Approach overview 

We propose an approach for determining the temporal consistency of Particle Filters in 

video tracking based on model validation of their uncertainty over sliding windows. The 

filter uncertainty is related to the consistency of the dispersion of the filter hypotheses in 

the state space. We learn an uncertainty model via a mixture of Gamma distributions 

whose optimum number is selected by modified information-based criteria. The time-

accumulated model is estimated as the sequential convolution of the uncertainty model. 

Model validation is performed by verifying whether the output of the filter belongs to 

the convolution model through its approximated cumulative density function. 

Experimental results and comparisons show that the proposed approach improves both 

precision and recall of competitive approaches such as Gaussian-based online model 

extraction, bank of Kalman filters and empirical thresholding. We combine the 

proposed approach with a state-of-the-art online performance estimator for video 

tracking and show that it improves accuracy compared to the same estimator with 

manually tuned thresholds while reducing the overall computational cost. The approach 

has been published in the Computer Vision and Image Understanding Journal [1] 

 

The following figure shows an example of a Particle-Filter-based tracker where the 

filter becomes inconsistent as most of the hypotheses are apart from each other and have 

small weights. The proposed approach aims to detect such behaviour over time for 

Particle Filters and determine that the tracker is not correctly operating. 

 

Figure 1. Example of filter consistency for face video tracking using a color-based Particle Filter 

(with 100 particles). The green ellipse represents the ideal target; the red ellipse represents the estimated 

target. The left image illustrates a consistent behavior. The central and right image illustrate inconsistent 

situations. The particles (identified for clarity only by their center) are colored according to their weights: 

the warmer the color, the higher the weight. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
 

The proposed approach starts from the output generated by a Particle Filter and 

considers two stages: Uncertainty Estimation and Model Validation. Model validation 

provides a robust framework for Particle Filter consistency analysis whose performance 
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could be improved by sliding windows. For measuring the consistency of the Particle 

Filter, we first compute the uncertainty of its posterior and accumulate its change over a 

temporal window. Then, we validate an uncertainty change model to check consistency 

(Figure 2). We term the proposed approach as Accumulated Validation of Uncertainty 

(AVU). 

 
Figure 2. Block diagram of the proposed approach. 
 

 

We estimate the uncertainty for each time t by measuring the spread of the generated 

hypotheses in the state space (particles) through the covariance matrix of the filter 

output. The following figure shows and example. 

 

 
Figure 3. Evolution of the filter uncertainty and its error for color-based Particle Filter video 

tracking. Green and red ellipses are, respectively, ideal and estimated target locations. Sample frames 

correspond to vertical dotted lines. The filter error was computed as the Dice coefficient. 

 

We estimate the uncertainty for each time t by measuring the spread of the generated 

hypotheses in the state space (particles) through the covariance matrix of the filter 

output. The following figure shows and example. 

 

The problem consists of detecting changes in the time series c(t) (uncertainty change 

over time), which is sampled from a random variable Q following a certain probability 

density function (pdf). For increasing robustness of model validation, we accumulate 

c(t) by using a sliding window of length L, obtaining a test statistic s(t). Finally, a null 

hypothesis test is performed for s(t) in order to determine whether s(t) belongs to a 

random variable S following a certain (pdf). The test is as follows: 
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After modelling the consistent filter status (i.e. pdfs for c(t) and its window-based 

accumulation s(t)), we obtain a decision rule to perform the hypothesis test. 

 

We combine AVU into an online method performance evaluation of Particle Filter-

based video tracking, ARTE [6]. ARTE determines whether the Particle Filter is 

successfully estimating the target state without the use of ground-truth. ARTE analyses 

the Particle Filter consistency and the time-reversibility property of target motion. 

2.1.2. Experimental results 

For performing experiments, we use two evaluation sets (D1 and D2) with sequences 

selected from the following datasets: CAVIAR, PETS2001, PETS2010, CLEMSON, 

VISOR, AVSS2007, TRECVID and MIT TRAFFIC. D1 is the same set as in [6], which 

is composed of 18 sequences (>3400 annotated frames). D2 contains 51 sequences 

(>7500 annotated frames). Samples are shown in the following figure:  

 

 

Figure 4. Sample images of the employed dataset 
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We compare AVU against representative approaches for online change detection 

without thresholding: the two-model sliding window (Two_MChi) that assumes 

Gaussian-distributed data, the bank of Kalman filters adapted to various change 

hypothesis Mmodel) and the empirical thresholding approach (EmpTh) [6], which is 

tuned using D1. All approaches are applied to the uncertainty change signal c(t). 

Experiments with different lengths of the sliding window (L) are performed for testing 

the robustness of AVU and the results are summarized in the following figure. 
 

 
Figure 5. Comparison for selected change detection approaches with different lengths (L) of the 

sliding windows for evaluation sets D1 (left) and D2 (right). 

 

The results of the proposed approach for online evaluation (hereinafter ARTE*) are 

presented in the following figure. The left part of the figure shows that ARTE* has 

similar accuracy to ARTE for D1. A noticeable improvement in TPR is observed for 

ARTE* with all lengths. However, ARTE* slightly increases the False Positive Rate 

compared to ARTE because of the use of the sliding window, requiring a higher amount 

of variation to detect an uncertainty change. This implies in some situations a short 

delay in the detection of changes. ARTE* reach similar performance to that of the 

change detector of ARTE whose threshold values were manually tuned on the same 

dataset (D1). The right part of the figure (results on D2) shows a situation where the 

thresholds of ARTE are not optimum. As it can be observed, shorter windows got 

higher results than that of ARTE demonstrating that the proposed approach generalizes 

better than the optimal thresholding of ARTE. However, a performance decrease is 

observed as the length of the window increases due to the reduction of the number of 

detected changes. The main advantage of ARTE* over ARTE is that it does not require 

to setup any threshold. 
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Figure 6. ROC analysis for successful-unsuccessful segmentation of video tracking for sets D1 (left) 

and D2 (right). Data are presented as mean _ standard deviation. (Key. ARTE: Adaptive Reverse 

Tracking Evaluation [6]; ARTE*: threshold-automatic ARTE; AUC: area under the curve, FPR: 

false positive rate, TPR: true positive rate). 

 

We demonstrate the generality of the proposed approach by evaluating two state-of-

the-art trackers [2][3]. The first tracker models targets as fragments adaptively selected 

over time which are embedded in the PF framework [2]. The second tracker performs 

multi-hypothesis estimation based on sparse appearance models, presenting a PF-like 

structure [3]. We employ the code provided by the authors with the default parameter 

settings. For the proposed approach, we learn the pdfs for each tracker using D1 dataset 

and we use L = 20 as a compromise between the previously described results for D1 and 

D2 datasets. The EmpTh approach is tuned to get best results for D1. The presented 

results are the mean of 10 runs. 
 

 
Table 1. Comparison of change detection approaches for the selected PF-based trackers. Best 

results are indicated in bold. 
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2.2. Feature-based online validation of video tracking 

2.2.1. Approach overview 

To overcome the problems related to evaluation, we propose an alternative approach for 

online evaluation of single-object trackers without ground-truth data. It is based on the 

temporal evolution of covariance features only requiring a bounding box as tracker 

output. Unlike previous work focused on the unsuccessful tracker case, the proposed 

approach models the successful case and identify model deviations via a validation 

strategy. Then, a two-state machine determines the successful tracker results. This work 

has been published as a letter [4] and final degree project [5]. 

 

An overview of the proposed approach is shown in the following figure. It starts 

from the target location estimated by the tracker at time t, xt = [xt; yt;wt; yt; ot], where 

(xt; yt), wt;, ht and ot are the center, width, height and orientation of the target, 

respectively. The proposed approach can used most of existing trackers as they output 

xt. Then, we measure the target appearance structure in xt via the covariance feature Σ. 

 

 
Figure 7. Block diagram of the proposed approach. 

 

We detect dissimilar covariance features over time via a model acceptance strategy. 

We consider a model D to define the variability of the distance between consecutive 

convariance matrices during successful tracker operation, which follows a probability 

density function. We perfom hypothesis testing for model acceptation where the null 

hypothesis H0 indicates that the covariance change is consistent with the model D. Let 

H1 be the hypothesis that an unknown change has occurred. Model acceptance is 

formulated via simple hypothesis testing. 

 

Once we determine the consistency of the filter, we employ a finite state machine to 

validate the tracker operation (see the following figure) where two states are defined for 

the successful (S) and unsuccessful (U) cases. Starting from the S state, the S->U 

transition is triggered when the H1 hypothesis is detected due to tracker failures (target 

loss). The U->S transition is when the tracker recovers to the correct target after a 

failure. It is activated when H1 hypothesis is accepted and the new tracker output is 

similar to the previously tracked target. We compute the similarity between the last 

successful and the new tracker outputs to determine if we are tracking an old target. 

 
Figure 8. Finite state machine to validate the tracker output using two states: successful (S) and 

unsuccessful (U). c(t) and s(t) are variables for model acceptance and tracker recovery checks.  
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2.2.2. Experimental results 

We use the SOVTds dataset [8] for evaluation and we validate the results of six well 

known trackers based on Mean-Shift, Color-based Particle Filter, Incremental Visual 

Tracking, Tracking- Learning-Detection, SuperPixel Tracking and Locally Orderless 

Tracking. The code of the original authors is used to analyse the dataset and get the 

tracker results for validation (~138000 in total). 

 

The following table compares common features in video tracking against the 

covariance feature, all applied within the proposed approach. For each feature, the pdf is 

modeled as the best fitting of popular distributions using the Kolmogorov-Smirnov 

statistic over the training set. The results show low performance for features based on 

contour (shape and area), motion (speed and direction) and color (gray, RGB 

histograms and texture) information, demonstrating their low discriminative power 

between the successful and unsuccessful cases. Structure-based features (HOG, CLD 

and Covariance) present the best results showing that the target appearance structure 

exhibits short-term stability. Figure 9 shows an example of the proposed approach 

where the three tracker errors (frames 90, 131-164 and 195-214) are correctly identified. 

 

 
Table 2. Performance (mean results) of the proposed approach using common features for video 

tracking. Bold indicates best results. 
[1] Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., and Shah, M.: ’Visual Tracking: An Experimental 
Survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (7), pp.1442-1468 
[4] Chau, D., Thonnat, M., Brémond, F., and Corvée, E.: ’Online parameter tuning for object tracking algorithms’, Image 
Vis. Comput., 2014, 32, (4), pp. 287-302 
[5] Spampinato, C., Palazzo, S., and Giordano, D.: ’Evaluation of tracking algorithm performance without ground-truth 
data’, Proc. of IEEE Conf. on Image Process., Orlando (USA), Oct. 2012, pp.1345-1348 
[10] Nummiaro, K., Koller-Meier, E., and Gool, L.V.: ’An adaptive colour-based particle filter’, Image Vis. Comput., 2002, 
21, (1), pp. 99-110 
 [15]Manjunath, B., Ohm, J., Vasudevan, V., and Yamada, A.: ’Color and texture descriptors’, IEEE Trans. Circ. Syst. 
Video Technol., 2001, 11, 6, pp.703-715 
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Figure 9. Example for online validation of tracking results between successful (S) and unsuccessful 

(U) for the Mean-Shift (MS) tracker. From top to bottom graphs: error as the spatial overlap 

between the estimation and ground-truth data, covariance difference dt and final tracker validation. 

 

Table 3 compares the results of the proposed approach against the related state-of-

the-art in terms of accuracy and computational cost. For feature-based approaches, the 

proposal clearly improves the accuracy of Hao et al (and its modification using the best 

feature), showing the benefits of model validation over a two-model Bayesian classifier 

for successful and unsuccessful cases. Moreover, the computational cost is reduced as 

only covariance feature is employed instead of multiple features in Spampinato et al. 

Compared to reverse validation of Hao et al, the proposed approach reduces the 

computation cost around 50x as compared to Hao et al. Moreover, the computations of 

Hao et al depend on the sequence length whereas the proposed approach has a bounded 
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computation. This limitation of Hao et al prevents its use for many applications where 

execution time is critical and for long sequences as the computational cost is not 

affordable. Therefore, the proposed approach allows a broader application of online 

validation as compared to Hao et al, offering a trade-off between accuracy and cost. 

Note that we do not compare with PF-based approaches and approaches with low-

performing features (motion speed and smoothness, see Table 2). 
 

 
Table 3. Comparative results (mean) for online tracker validation. The symbol ’*’ is for [5] using 

only the best feature. Δ% shows the difference (in percentage) between the proposed and each 

selected approach. 
[3] Hao, W., Sankaranarayanan, A., and Chellappa, R.: ’Online Empirical Evaluation of Tracking Algorithms’, IEEE 
Trans. Pattern Anal. Mach. Intell., 2010, 32, (8), pp.1443-1458  
[5] Spampinato, C., Palazzo, S., and Giordano, D.: ’Evaluation of tracking algorithm performance without ground-truth 
data’, Proc. of IEEE Conf. on Image Process., Orlando (USA), Oct. 2012, pp.1345-1348 
 

3. Feedback-driven analysis 
In this section, we present a feedback-based approach to extract features (skin) in 

images, that correspond to human body parts is an important task in many areas such as 

human– computer interaction, gesture analysis and content-based image retrieval. 

3.1. Skin detection by dual maximization of detectors 
agreement for video monitoring  

3.1.1. Approach overview 

We propose an approach to detect skin in single images of human activity recognition 

videos where, for each image, it dynamically selects the best configuration starting from 

a predefined one. The approach has been published in the Pattern Recognition Letters 

Journal [7]. 

 

First, we introduce such adaptation using the AM framework. It selects the best 

detectors’s configuration based on agreement maximization (AM) and consists of three 

basic elements (detectors applied, agreement measure and optimization process). 

However, this framework has no constraints in the parameter optimization process 

which makes the thresholds tend to increase the number of false positives or negatives 

as agreement is high in certain non-desirable situations. Moreover, there is no indication 

of which channels of colour spaces are better for increasing the agreement and complex 

combination schemes can be designed considering the properties of the employed 

detectors. These detectors are improved by improved by learning parameter relations 

through kernel thresholding and including a new agreement measure (see Figure 10(a)). 
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Then, two AM-based detectors are composed to detect skin-like regions and high-

probable skin pixels (via optimal selection of color space channels), which are later 

combined using binary morphology (see Figure 10(b)) for maximizing performance. 

 

 
Figure 10. Block diagrams of the proposed (a) detector based on agreement maximization (AM) 

and (b) framework for skin detection in images. 

 

For each type of scenario, we obtain the best color space channels among the most 

popular ones (RGB, HSV, YCbCr and Lab) to detect skin pixels by determining their 

discriminative capabilities over the training data.  We conform the two detectors by 

using the color channels {Cbest,Clow} for FD1 and {Cbest,Chigh} for FD2. 

 

After selecting the optimum channels of the AM-based skin detectors and optimizing 

their parameters, they are combined to improve the final result of the skin detection. 

Considering that one of the detectors obtains highly probable pixels whereas the other 

gets compact skin-like regions (that might correspond to skin or similar objects), we 

propose to use a morphological reconstruction filter to retain only the skin regions 

marked by the highly probable pixels of FD2(among all the regions of FD1). The 

following figure shows an example of the proposed approach 

 

 
Figure 11. Sample results for an image of the EDds dataset showing the output of the skin detectors 

FD1 (H-a colour channels) and FD2 (H-b colour channels) after optimum channel selection and 

their combination through mathematical morphology. 

3.1.2. Experimental results 

As evaluation set, we have selected images from public datasets for human activity 

recognition: AMI (http://corpus.amiproject.org/), EDds (http://www-

vpu.eps.uam.es/DS/EDds/), SSG (http://www-vpu.eps.uam.es/publications/SkinDetDM)  

LIRIS (http://liris.cnrs.fr/harl2012)  and UT (http://cvrc.ece.utexas.edu/SDHA2010). 

This set covers a wide variety of situations, viewing distances and resolutions (ranging 

from 320x240 to 720x576) where skin detection has many challenges due to, among 

others, illumination changes or poor visibility. For each dataset, around 50 images have 

been selected and the corresponding ground truth has been manually generated at pixel 

level. In total, 290 images compose the evaluation set containing more than 870000 skin 

pixels, which have been equally divided into two sets for training (~450000) and testing 

(~420000). This subsection presents selected results of the proposed approach. 

 

http://corpus.amiproject.org/
http://www-vpu.eps.uam.es/DS/EDds/
http://www-vpu.eps.uam.es/DS/EDds/
http://www-vpu.eps.uam.es/publications/SkinDetDM
http://liris.cnrs.fr/harl2012
http://cvrc.ece.utexas.edu/SDHA2010
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The following figure depicts the mean detection ratio of the histogram-models 

computed for each channel over the training set. As it can be observed, the minimum 

value corresponded to the H channel (of HSV) for all the datasets except for UT, where 

a channel (of Lab) obtained best results, closely followed by H. This indicates that H 

channel had stable results and high discriminative power (for skin and non-skin regions) 

in the considered scenarios. 

 

 
Figure 12. Results for base optimum channel selection over the selected datasets using 

mean detection ratio. 

 

 

Skin detection results of the proposed and compared approaches are presented in the 

following Table. As it can be observed, the results of the LIRIS dataset exhibited a clear 

decrease in performance for all the approaches as compared to the results of the other 

datasets. This is due the office furniture used in the dataset, which contains several skin-

like surfaces affecting the precision results. In general, fixed-thresholding approaches 

(T_HS and T_CbCr) got medium performance showing that, albeit effective, the use of 

parameters with fixed values does not generalize well for a variety of heterogeneous 

scenarios. BAY versions (BAY_G and BAY_H) obtained good performance 

demonstrating that non-skin data can be efficiently used to improve final skin detection.  

Adaptive approaches (ASD and MMI) presented very low performance indicating that 

introducing adaptive capabilities into skin detection is not an easy task.  
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Table 4. Comparison for selected skin detection approaches. Best results are bold marked. Last row 

indicates the Percentage increase (%) of each measure with respect to the best performance. 
[5] M. Jones, J. Rehg, Statistical color models with application to skin detection, Int. Journal of Computer Vision 46 (1) 
(2002) 81–96. 
[6] Y. Wang, B. Yuan, A novel approach for human face detection from color images under complex background, 
Pattern Recognition 34 (10) (2001) 1983–1992. 
[11] R. Khan, A. Hanbury, J. Stoettinger, Skin detection: A random forest approach, in: IEEE Int. Conf. on Image 
Processing (ICIP), 2010, pp. 4613–4616. 
[12] B. Jedynak, H. Zheng, M. Daoudi, Skin detection using pairwise models, Image and Vision Computing 23 (13) 
(2005) 1122–1130.  
[13] F. Dadgostar, A. Sarrafzadeh, An adaptive real-time skin detector based on hue thresholding: A comparison on two 
motion tracking methods, Pattern Recognition Letters 27 (12) (2006) 1342–1352. 
[18] C. Conaire, N. O’Connor, A. Smeaton, Detector adaptation by maximising agreement between independent data 
sources, in: IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2007, pp. 1–6. 
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4. Conclusions and future work 

4.1. Quality measures 
Two approaches have been presented for online validation of video tracking. The first is 

based on accumulation of spatial uncertainty of filter hypotheses (as convolutions of 

mixtures of Gamma distributions) whereas the second is based on short-term evolution 

of covariance features.  

 

The results for both approaches show that focusing on temporal consistency of 

features is more effective than the traditional approaches. Moreover, the structure of 

target appearance (covariance) performs better than common features to determine 

tracker errors. Finally, the two proposed approaches outperform competitive feature-

based approaches and provide a generic cost-bounded validation that can be applied for 

long-term and time-critical applications. 

 

As future work, we will explore the application of both approaches to deterministic 

filters through appropriate adaptations, model validation based on multiple detectors 

and the selection of the optimum window length for time-based analysis. 

4.2. Feedback-driven analysis 
For the task of skin-detection, we have presented the benefits of the feedback approach 

for video analysis compared with the traditional feed-forward one. Its main advantages 

are the possibility of achieving a desired performance level and adapting to unknown 

conditions. However, its complex design has limited its use by the video processing 

community. Conversely, the feed-forward approach is easy to develop and the control 

over the process performance is not feasible. 
 

Experimental results demonstrate the adaptive capabilities of the proposed approach 

to improve performance of parameter-fixed, adaptive and learning-based state-of-the-art 

approaches.  

As future work, we will explore the adaptive estimation of skin proportions for the 

agreement function and the application of the proposed approach to video sequences 

exploiting temporal relations between the frames. 
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